Consider the following basic facts regarding inequalities.

- A1 For all real numbers a, b, c, if $a \leq b$ and $b \leq c$ then $a \leq c$.
- A2 For all real numbers a, b, c, if $a \leq b$ then $a + c \leq b + c$.
- A3 For all real numbers a, b, c, if $a \leq b$ and $0 \leq c$ then $ac \leq bc$.

Prove the statements below using A1-A3, together with any basic facts about equality =.

- 1. For all real numbers a, b, if $0 \le a$ and $a \le b$ then $a^2 \le b^2$.
- 2. For all real numbers a, if $a \leq 0$ then $0 \leq -a$.
- 3. For all real numbers a, b, if $b \le a$ and $a \le 0$, then $a^2 \le b^2$.
- 4. For all real numbers $b, 0 \le b^2$.
- 5. For all real numbers $a, b, ab \leq \frac{1}{2}(a^2 + b^2)$. *Hint: Consider* $(a b)^2$.
- 6. For all real numbers a, b, δ , if $\delta \neq 0$ then $ab \leq \frac{1}{2}(\delta^2 a^2 + \delta^{-2}b^2)$.
- 7. For all real numbers $a, b, ab = \frac{1}{2}(a^2 + b^2)$ if and only if a = b.
- 8. For all non-negative real numbers $a, b, \sqrt{ab} \leq \frac{1}{2}(a+b)$. This is called the *arithmetic-geometric mean inequality*.

Hints:

- 1. Use A3 and A1.
- 2. Use A2 with c = -a.
- 3. This is similar to Problem 1, except you should use Problem 2 so that A3 applies.
- 4. Prove using cases: $0 \le a$ (use Problem 1) and $a \le 0$ (use Problem 3).
- 5. Use the inequality $0 \le (a-b)^2$ (why is this true?) and then FOIL.
- 6. Notice that $ab = (\delta a)(\delta^{-1}b)$.