Consider the following basic facts regarding inequalities.
A1 For all real numbers a, b, c, if $a \leq b$ and $b \leq c$ then $a \leq c$.
A2 For all real numbers a, b, c, if $a \leq b$ then $a+c \leq b+c$.
A3 For all real numbers a, b, c, if $a \leq b$ and $0 \leq c$ then $a c \leq b c$.
Prove the statements below using A1-A3, together with any basic facts about equality $=$.

1. For all real numbers a, b, if $0 \leq a$ and $a \leq b$ then $a^{2} \leq b^{2}$.
2. For all real numbers a, if $a \leq 0$ then $0 \leq-a$.
3. For all real numbers a, b, if $b \leq a$ and $a \leq 0$, then $a^{2} \leq b^{2}$.
4. For all real numbers $b, 0 \leq b^{2}$.
5. For all real numbers $a, b, a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right)$. Hint: Consider $(a-b)^{2}$.
6. For all real numbers a, b, δ, if $\delta \neq 0$ then $a b \leq \frac{1}{2}\left(\delta^{2} a^{2}+\delta^{-2} b^{2}\right)$.
7. For all real numbers $a, b, a b=\frac{1}{2}\left(a^{2}+b^{2}\right)$ if and only if $a=b$.
8. For all non-negative real numbers $a, b, \sqrt{a b} \leq \frac{1}{2}(a+b)$. This is called the arithmetic-geometric mean inequality.

Hints:

1. Use A3 and A1.
2. Use A2 with $c=-a$.
3. This is similar to Problem 1, except you should use Problem 2 so that A3 applies.
4. Prove using cases: $0 \leq a$ (use Problem 1) and $a \leq 0$ (use Problem 3).
5. Use the inequality $0 \leq(a-b)^{2}$ (why is this true?) and then FOIL.

6 . Notice that $a b=(\delta a)\left(\delta^{-1} b\right)$.

